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ABSTRACT 

In information theory, a signature is characterized by the 
information content as well as noise statistics of the 
communication channel. Biosignatures have analogous 
properties. A biosignature can be associated with a 
particular attribute of a pathogen or a host. However, the 
signature may be lost in backgrounds of similar or even 
identical signals from other sources. In this paper, we 
highlight statistical and signal processing challenges 
associated with identifying good biosignatures for 
pathogens in host and other environments. In some cases 
it may be possible to identify useful signatures of 
pathogens through indirect but amplified signals from the 
host. Discovery of these signatures requires new 
approaches to modeling and data interpretation. For 
environmental biosignal collections, it is possible to use 
signal processing techniques from other applications (e.g., 
synthetic aperture radar) to track the natural progression 
of microbes over large areas. We also present a computer- 
assisted approach to identify unique nucleic-acid based 
microbial signatures. Finally, an understanding of host- 
pathogen interactions will result in better detectors as well 
as opportunities in vaccines and therapeutics. 

1. INTRODUCTION 

The motivation for our research is to establish diagnostics 
for infectious diseases that are highly specific, easy to use, 
rapid, and useful in a variety of media and applications. 
We have characterized the progression of signatures as 

I. Empirically discovered signatures, 
11. Signatures located on the pathogen genome- 

Le., which gene(s) contains the signature, and 
111. Association of the signature with a function of 

the pathogen and/or the host response. 
Historically, an Edisonian approach to diagnostic 

signature discovery has been utilized that leveraged 
intuition from microbiological experts, immune responses 
(e.g., antibodies), and limited tools for comparisons 
among species. In attempting to duplicate and extend the 
traditional approach to target other infectious agents we 

frequently found a very low return on investment. It was 
not uncommon to test over 1,000 “promising” diagnostics 
to find that none of them could identify all strains of the 
target pathogen or they would produce false positives in 
the presence of similar (but different and often non- 
pathogenic) microbes. The first challenge we faced was to 
invent a reliable source of biosignatures for many 
pathogens. 

Assuming a useful biosignature for the target 
pathogen exists (Type I signature), we also have a need to 
push the development towards Types I1 and I11 signatures 
in order to anticipate when the diagnostics may fail and to 
provide targets for inhibitors, vaccines and treatments. A 
useful test case is influenza. Each year, this virus returns 
to the human population with a modulated genome. 
Association of the biosignature with mechanisdhnction 
provides benefit above and beyond detection. It appears 
that a Eukaryotic host responds to pathogens in ways that 
may amplify the number and volume of potential 
biosignatures [l]. Finally, it is essential that the pathogen 
can be found (if present) in complex environments 
including animals, plants, air, soil, and water. This is a 
concentration or, in the traditional information theory 
lingo, signal to noise ratio issue. The number of 
background microbes as well as chemical and physical 
inhibitors can interfere with successful application of the 
diagnostic sensor-even one based on an excellent 
biosignature. Because of this, it is important to understand 
where to look in the environment for signature-similar 
microbes and use these to optimize pathogen signatures. 

In this paper, we summarize our approach to 
computer-assisted design of nucleic acid based 
diagnostics with additional details available in Fitch [2]. 
Preliminary results on Yersinia pestis as a model organism 
for studying mechanisms of pathogenicty, host response, 
and, therefore, Type I11 signatures are presented. We 
include a discussion of a subset of the many potential 
approaches to modeling, simulating, and analyzing 
genomic and proteomic data for the purpose of improved 
Type I11 signatures. We refer to this scientific endeavor as 
Path-omics: the comprehensive (omics = total mass of 
knowledge) study of disease and causative mechanisms 
(path = disease andor disease causing). Finally, we 



provide a context for environmental monitoring for 
pathogens and proposed approaches to combining sensor 
measurements with computer models. All of these closely 
related applications are described in the context of a 
systems approach to biological applications. 

2. SYSTEM-LEVEL HYPOTHESIS TESTING 

Advances in experimental techniques are generating vast 
amounts of data including nucleic acid sequence, genes, 
transcript profiles of mRNA, protein expression levels, 
post-translational modifications, and in vivo experiments 
[3, 41. The data provide us with the opportunity to apply 
an integrated systems approach for exploring biological 
pathways (e.g., signaling, transcription, translation, 
secretion, adhesion) and the emergent behavior of the 
system. This systems approach allows the study of the 
interactions of a complete set of objects, e.g. genes or 
proteins, rather than simple binary interactions between 
two objects. To systematically elucidate all of the 
interactions between the objects would require a 
combinatorially large number of experiments. Even with 
the advent of high-throughput experimental techniques, it 
is not possible to perform all experiments to explicitly 
identify each and every reaction. Fortunately, it is 
recognized that not all interactions are active in the system 
[5] and performing the correct subset of experiments will 
provide the needed information. The challenge is how to 
define the appropriate experiments and then analyze the 
resulting large amounts of data produced in the high- 
throughput model? The answer to this question is an 
integrated systems approach coupling the experimental 
regime with theory and modeling. The computational 
model can eliminate unnecessary experiments that would 
provide duplicative data. Furthermore, by integrating the 
modeling with the experiments, high throughput analysis 
of key biochemical species can be maintained in less time 
than manual analysis. 

Hypothesis testing is a basic tenet of science. But 
with a large number of objects (e.g. over 4,500 genes in 
Yersinia pestis), conceptualizing the outcome of the 
hypothesis requires a computational model. In the systems 
biology paradigm, hypothesis testing involves global 
analysis-this requires the development of novel 
computational algorithms. We are therefore taking an 
integrated experimental and computational approach to 
hypothesis testing at the systems level. 

This integrated approach is illustrated in Fig. 1. 
Experimental data is first used to generate a model of the 
system. This, in itself, is a difficult inverse problem, 
requiring iteration. In the next step, the model, which is 
consistent with existing experimental data, is used to 
predict new behavior of the system. In order to test the 
hypothesis, i.e. the predicted behavior, from the model, 
new experiments are designed to test the hypothesis. The 

Design of Experiment 

Fig. 1 The role of computer models in systems-levc 
hypothesis testing biology. Determining an 
appropriate model as well as the correct parameter, 
for the model is a difficult inverse problem. 

new experiments themselves may be quite diverse, 
corresponding to gene expression, protein or metabolite 
concentrations, or overall cellular behavior. Finally, the 
newly designed experiment generates new experimental 
data, which must be integrated into the existing model to 
generate the improved model. This leads to an iterative, 
hypothesis driven approach to data-driven model 
development. 

3. NUCLEIC ACID PATHOGEN SIGNATURES 

In August 2000, a variety of traditional wet-lab 
development methods were failing to yield robust 
pathogen signatures. In testing over 1,000 candidates, all 
cross-reacted with neighbor species commonly found in 
background environments within the continental US. This 
prompted a quick and dirty test, using the BLAST [a] 
algorithm to compare the entire genome of the target 
pathogen against all the microbial genomes then in 
Genbank (about 85). Several giga-bytes of raw BLAST 
output were parsed and all exact match regions of the 
pathogen genome with another genome were removed or 
“masked out” of the pathogen genome. All remaining 
pathogen sequence was then considered “potentially 
unique” to the target pathogen. 

The MIT Primer3 program [7] was used to design 
potential signature primer pairs on each fragment of 
sufficient length. Nearly 4,000 signature candidates on the 
-5Mbase pathogen genome resulted from this crude 
BLAST parsing effort. We chose 400 at random, ordered 
the PCR primer oligos, and screened against the panel of 
near-neighbors that had eliminated all 1,000 of the wet- 
lab candidates. Several dozen of the candidate signatures 
passed this screening, and 4 survived rigorous testing of 
the complete set of DNAs used to ensure a high degree of 
specificity and have been successfully fielded. We 
realized that a threshold had been crossed it was now 



feasible to apply whole-genome analysis techniques to the 
field of DNA signature development. This was our first 
“systems” approach. We were encouraged by the initial 
success of the crude BLAST-parsing demonstration. 
However, we realized that a lot needed to be done to make 
even a modest prototype of an automated DNA signature 
generation pipeline. 

Length of DNA sequence affects the scalability of 
DNA signature development algorithms. Techniques that 
may be computationally feasible for small viral genomes 
often fail on the genomes of bacteria that may be 1,000 
times larger. These economic and scientific realities of 
DNA signature construction influenced our signature 
development process. The pipeline has two entry points, 
nominally one for viral and one for bacterial pathogens. 
The viral pathogen entry point can also be used as a last 
resort for bacterial genomes where only a few gene 
fragment sequences are available. 

Virus strain genomes are pre-processed to extract a 
single “consensus gestalt” genome. Bacterial genomes are 
assumed to have (at best) one completed genome. In 
either case, we employ an efficient algorithm to compare 
the pathogen target against all other sequenced bacterial 
and viral genomes, “masking out” in the pathogen all 
DNA sequence over K bases in length that “match” 
(exactly or close enough for PCR) one or more of the 
other non-target genomes. We then mine the remaining 
“candidate-unique” DNA to search for suitable signature 
primers. These are checked electronically, stored in a 
database, and a subset is ordered using a computer- 
generated procurement process. Upon delivery from an 
external vendor, they are screened in the wet laboratory 
against the target DNA and against a panel of near- 
neighbors and environmental backgrounds. Successful 
ones are sent to the CDC (or other collaborator) for 
additional testing and validation. Validated assays are 
utilized in both public health and bio-defense applications. 

See Nicholas [8] for a brief comparison of MSA 
algorithms. Unfortunately, many of the MSA algorithms 
and codes do not scale well for even modest genome 
lengths or for enough strains in the alignment. We located 
a very good MSA algorithm called DiAlign [9] that scales 
better than any other we tested. 

Assuming that MSA can be completed successfully, 
we then process the aligned genomes into a “consensus 
gestalt” sequence. Most simply stated, this places a “dot” 
(period) in all positions of the output alignment if the 
bases in that position are not in agreement. The base is 
capitalized if all the bases in that position match and the 
position is part of at least an 18 base consecutive run of 
matches. Otherwise, the base is lower-case (match at that 
position but no run of 18 matches). An 18 position 
consecutive run of bases is used because this is the 
minimum length for a forward or reverse PCR primer. 

Bacterial pathogens take a different route through the 
candidate signature pipeline. Even in the (rare today) case 
where more than one full-length bacterial genome is 
available, current MSA algorithms cannot handle input of 
that length. In addition, bacterial genomes violate the 
subtle assumptions of colinearity that underlie most MSA 
algorithms. Colinearity is violated due to real biological 
issues including genome rearrangements, gene 
duplication, and other events. 

The most efficient algorithms for finding sub-strings 
that match between two inputs are known as “suffix-tree” 
algorithms [ 101. We have utilized an extremely efficient 
suffix-tree implementation known as mkvtreehmatch 
[ 111. Our collaborator, S .  Kurtz, added several features 
that met application-specific needs for signature 
development, and supplied the project with numerous 
binary executable updates and performance 
enhancements. 

As our “pipeline” for nucleic acid signature discovery 
matures we are looking to use improved multi-sequence 
alignment tools as well as extend the approach to Type I1 
and 111 signatures where the function of the sequence is 
utilized or even to design binding affinity assays. 

4. BACKGROUNDS 

Biological backgrounds studies are motivated to 
I) Establish natural pathogen concentrations in the 

environment for environmental monitoring (e.g., 
deployments) and for fiture reference in 
forensicslattribution and restoration activities (e.g., 
cleaning up to the pre-existing environmental standard). 

2) Utilize endemic microbes to track mobility of 
microbes in environments that are perceived to be 
potential terrorist targets. This is essentially an emperical 
threat assessment that can be used to pre-qualify modeling 
and simulation as well as place and elements of a sensor 
network. 

To achieve these two goals requires a variety of 
improvements in sample collection and processing 
including enhanced throughput. The use of broad 
spectrum detectors (e.g., the 16s ribosomal DNA chip 
[ 121) and microbe-specific signatures enable the second 
goal. Endemic microbes may come from a variety of 
sources that are representative of point and line releases 
including manmade, agricultural, and geographical--e.g., 
ponds. 

We are developing a collection network that is 
densely sampled in both time and space. Aerosol and soil 
samples will be collected and processed using 16s 
analysis as well as specific PCR primers. Meteorological 
data is also needed to incorporate dispersion into the 
models. Several approaches to data analysis are possible: 
a Bayesian approach 1131, a matched filter / optimal linear 
estimator similar to tomography and radar imaging [14], 



and iteration between data and forward models using 
atmospheric propagation algorithms like those at 
NARAC. 

This task will help validate atmospheric models and 
establish a method for empirical measurements in an 
urban environment with less environmental impact than a 
controlled release experiment. Preliminary evidence that 
endemic microbes can be tracked and modulated in the 
environment exists. It is not yet apparent from this data 
whether a decrease) increase or displacement was the 
cause of the modulation of the environmental microbes. 

5. THE NEXT LEVEL SYSTEM 

The computational challenge is the inverse problem 
of developing the model from experimental data. As an 
example, determination of the genetic network 
architecture from microarray data has two requirements. 
The first requirement is to find a mathematical description 
of the interactions between genes. It would seem natural 
to treat the genes as biomolecules and the expression 
levels as chemical concentrations. The coupling between 
genes and their time-evolution could then be treated as a 
set of coupled ordinary differential equations. However, 
the experimental data obtained does not lend itself to this 
treatment because the level of precision is insufficient to 
determine the parameters of a continuous numerical 
model. The fuzzy logic approach is one mathematical 
description used to represent this type of experimental 
data [ 15, 161. Fuzzy logic provides the framework for the 
mathematical manipulation of imprecise quantitative data 
such as that generated from microarray data. 

The second requirement is to develop algorithms that 
determine the parameters of the mathematical model that 
describes the interactions and evolution of the system. In 
this particular example of gene network architecture, this 
requires algorithms that determine how genes within a set 
interact with each other and how these sets interact. Just 
as importantly, these algorithms will determine which 
genes do not interact with each other. This is a technically 
difficult problem because of the combinatorially large 
number of interactions in an entire genome. An exhaustive 
search is not possible so one must resort to more efficient 
methods. Possibilities include genetic algorithms and 
programs, linear optimization techniques, neural 
networks, and stochastic methods. Finally, the models 
must be extensible to larger volumes and types of 
biological data. 
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